Computers II Lesson 4

4.0 Extreme Programming

Extreme programming (XP) is best known and most widely used of the agile
methods.

It was named extreme programming because the approach was developed by

pushing recognized good practices to extreme levels.

In XP, several new versions of a system may be developed by different
programmers, integrated and tested in a day.

In extreme programming, requirements are expressed as scenarios called
user stories, which are implemented directly as a series of tasks.

Programmers work in pairs and develop tests for each task before writing the
code.

All tests must be successfully executed when new code is integrated into the
system.

There is a short time gap between releases of the system.

Select User Break Down
Stories for this Stories to Tasks - Plan Release
Release

B

Develop/

System Software Test Software

. Incremental development is supported through small, frequent releases of
the system. Requirements are based on simple customer stories or scenarios
that are used as a basis for deciding what functionality should be included in
a system increment.

. Customer involvement is supported through the continuous engagement of
the customer in the development team. The customer representative takes
part in the development and is responsible for defining acceptance tests for
the system.

. People, not process, are supported through pair programming, collective
ownership of the system code, and a sustainable development process that
does not involve excessively long working hours.

. Change is embraced through regular system releases to customers, test-first
development, refactoring to avoid code degeneration, and continuous
integration of new functionality.

. Maintaining simplicity is supported by constant refactoring that improves
code quality and by using simple designs that do not unnecessarily anticipate
future changes to the system.

* Inan XP process, customers are intimately involved in specifying and

prioritizing system requirements.

* The system customer is part of the development team and discusses

scenarios with other team members.

* Together, they develop a ‘story card’ that encapsulates the customer needs.

* The story cards are the ‘planning game’

* The development team then aims to implement that scenario in a future
release of the software.

Incremental planning

Small releases

Simple design

Test-first development

Refactoring

Pair programming

Collective ownership

Continuous integration

Sustainable pace

On-site customer

Requirements are recorded on Story Cards and the Stories to be included in a
release are determined by the time available and their relative priority. The
developers break these Stories into development ‘Tasks". See Figures 3.5 and 3.6.

The minimal useful set of functionality that provides business value is developed
first. Releases of the system are frequent and incrementally add functionality to
the first release.

Enough design is carried out to meet the current requirements and no more.

An automated unit test framework is used to write tests for a new piece of
functionality before that functionality itself is implemented.

All developers are expected to refactor the code continuously as soon as possible
code improvements are found. This keeps the code simple and maintainable.

Developers work in pairs, checking each other's work and providing the support
to always do a good job.

The pairs of developers work on all areas of the system, so that no islands of
expertise develop and all the developers take responsibility for all of the code.
Anyone can change anything.

As soon as the work on a task is complete, it is integrated into the whole system.
After any such integration, all the unit tests in the system must pass.

Large amounts of overtime are not considered acceptable as the net effect is
often to reduce code quality and medium term productivity

A representative of the end-user of the system (the Customer) should be
available full time for the use of the XP team. In an extreme programming
process, the customer is a member of the development team and is responsible
for bringing system requirements to the team for implementation.

3

= A general problem with incremental development is that it tends to degrade
the software structure, so changes to the software become harder and harder
to implement.

= Essentially, the development proceeds by finding workarounds to problems,
with the result that code is often duplicated, parts of the software are reused
in inappropriate ways, and the overall structure degrades as code is added to
the system.

= Extreme programming tackles this problem by suggesting that the software
should be constantly refactored.

* The programming team looks for possible improvements to the software and
implement them immediately. When a team member sees code that can be
improved, they make these improvements even in situations where there is
no immediate need for them.

4.1 Story Cards

When story cards have been developed, the development team breaks them
down into tasks and estimates the effort and resources required for
implementation.

This usually involves discussions with the customer to refine the requirements.

The customer then prioritizes the stories for implementation, choosing those
stories that can be used immediately to deliver useful business support.

The intention is to identify useful functionality that can be implemented in
about two weeks, when the next release of the system is made available to the
customer.

As requirements change, the unimplemented stories change or may be
discarded. If changes are required for completed system, new story cards are

developed and the customer decides whether these changes should have priority
over new functionality.

Kate is a doctor who wishes to prescribe medication for a patient attending a dinic.
The patient record is already displayed on her computer so she clicks on the
medication field and can select current medication’, ‘new medication’ or ‘formulary’.

If she selects ‘current medication’, the system asks her to check the dose. If she
wants to change the dose, she enters the dose and then confirms the prescription.

If she chooses ‘new medication’, the system assumes that she knows which
medication to prescribe. She types the first few letters of the drug name. The system
displays a list of possible drugs starting with these letters. She chooses the required
medication and the system responds by asking her to check that the medication
selected is correct. She enters the dose and then confirms the prescription.

If she chooses ‘formulary’, the system displays a search box for the approved
formulary. She can then search for the drug required. She selects a drug and is asked
to check that the medication is correct. She enters the dose and then confirms the
prescription.

The system always checks that the dose is within the approved range. If it isn't, Kate
is asked to change the dose.

After Kate has confirmed the prescription, it will be displayed for checking. She either

clicks ‘OK’ or ‘Change’. If she clicks ‘OK’, the prescription is recorded on the audit
database. If she clicks on ‘Change’, she reenters the ‘Prescribing medication’ process.

4.2 XP Testing

= Test-first development is one of the most important innovations in XP.

= XP includes an approach to testing that reduces the chances of introducing
undiscovered errors into the current version of the system.

= Instead of writing some code and then writing tests for that code, you write
the tests before you write the code.

= This means that you can run the test as the code is being written and
discover problems during development.

Input:
1. A number in mg representing a single dose of the drug.
2. A number representing the number of single doses per day.

Tests:

1. Test for inputs where the single dose is correct but the frequency is too high.
2. Test for inputs where the single dose is too high and too low.

3. Test for inputs where the single dose x frequency is too high and too low.

4. Test for inputs where single dose x frequency is in the permitted range.

Output:
OK or error message indicating that the dose is outside the safe range.

An edge case is a problem or situation that occurs only at an extreme (maximum or
minimum) operating parameter.

For example:

= A function that divides two numbers might be tested using both very large
and very small numbers. This assumes that if it works for both ends of the
magnitude spectrum, it should work correctly in between.

Boundary case refers to the behavior of a system when one of its inputs is at or just
beyond its maximum or minimum limits.

If an input field is meant to accept only integer values 0—100, entering the values -
1,0, 100, and 101 would represent the boundary cases.

For example:

= A common technique for testing boundary cases is with three tests: one on

the boundary and one on either side of it. So for the previous example that
would be -1, 0, 1, 99, 100, and 101.

